Apollonius’s “Conics,” written about 200 B.C., on conic sections, the ellipse, parabola, and hyperbola, is the most complex and difficult single work of all Greek mathematics and was all but unknown in the west until the fifteenth century. This magnificent copy, probably the most elegant of all Greek mathematical manuscripts, was made in 1536 for Pope Paul III. The pages on display show the particularly elaborate figures illustrating Propositions 2-4 of Book III on the equality of areas of triangles and quadrilaterals formed by tangents and diameters of conics, and by tangents and lines parallel to the tangents. In Greek, 1536.

(flasd)